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Introduction

Introduction

Optimization problem:

w′µ−
γ

2
w′Σw → max subject to w′1 = 1 .

where µ = E(y), Σ = Var(y), w = (w1,w2, ...,wp)′ is the p-dimensional vector of the
portfolio weights, and y is the vector of asset returns.

Solution:

wEU =
Σ−11

1′Σ−11
+ γ−1Qµ with Q = Σ−1 −

Σ−111′Σ−1

1′Σ−11

▶ Population efficient frontier:

(R − RGMV )
2 = s(V − VGMV ) ,

where

RGMV =
1′Σ−1µ

1′Σ−11
,VGMV =

1
1′Σ−11

, and s = µ′Qµ .

Remark: wEU , REU , VEU , RGMV , VGMV and s are functions of µ and Σ only.
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Introduction

Parameter uncertainty

Parameter uncertainty: Estimation
µ and Σ are unknown parameters⇝ estimation

Sample mean vector and covariance matrix:

ȳn =
1
n

n∑
j=1

yj and Sn =
1

n − 1

n∑
j=1

(yj − ȳn)(yj − ȳn)
′ .

Sample EU portfolio weights:

ŵEU =
S−1

n 1

1′S−1
n 1

+ α−1Q̂nȳn with Q̂n = S−1
n −

S−1
n 11′S−1

n

1′S−1
n 1

Sample efficient frontier:

(R − R̂GMV )
2 = ŝ(V − V̂GMV ) ,

where

R̂GMV =
1′S−1

n ȳn

1′S−1
n 1

, V̂GMV =
1

1′S−1
n 1

, and ŝ = ȳ′
nQ̂nȳn .
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Introduction

Parameter uncertainty

How good is the sample efficient frontier?
p = 10, n = 500
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p = 250, n = 500
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p = 50, n = 500
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p = 400, n = 500
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Sample efficient frontier is overoptimistic, especially for large p
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Improved estimator: Shrinkage approach

Improved estimators: Shrinkage approach

▶ Mean vector: James and Stein (1961), Gleser (1986), Chételat and Wells (2012),
Wang, Tong, Cao and Miao (2014), Bodnar, Okhrin and Parolya (2018)

▶ Covariance matrix/precision matrix: Efron and Morris (1976), Ledoit and Wolf
(2004), Cai, Lui and Luo (2011), Xue and Zou (2012), Fan, Liao and Mincheva
(2013), Wang, Pan, Tong and Zhu (2015), Bodnar, Gupta, and Parolya (2014,
2016)

▶ Optimal portfolio weights: Golosnoy and Okhrin (2007), Frahm and Memmel
(2010), Kourtis, Dotsis and Markellos (2012), Bodnar, Parolya, and Schmid (2018)

Classical approach: Optimal portfolio weights are obtained by using improved
estimators for the mean vector and for the precision matrix

Here: Improved estimator is constructed directly for portfolio weights⇝ Reduction of
the estimation error
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Improved estimator: Shrinkage approach

Data-generating model

Let Yn = (y1, ..., yn) be the observation matrix and let

Yn
d
= µ1′

n +Σ1/2Xn ,

where Xn consists of i.i.d. random variables with zero means and unit variances.

Assumptions:
(A1) Σ is a non-random positive definite matrix.

(A2) The elements of Xn have bounded 4 + ε moments for some ε > 0.

(A3) The efficient frontier is asymptotically a nondegenerate object: s = µ′Qµ > 0
uniformly in p.
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Improved estimator: Shrinkage approach

Shrinkage estimator
We seek the estimator in the form (for c ∈ (0,+∞), c ̸= 1)

ŵSE = αnŵEU + (1 − αn)b with b′1 = 1 and b′Σb < ∞ ,

where
▶ ŵEU is the sample estimator of the EU portfolio (Moore-Penrose inverse is used

for c > 1)
▶ b is a vector of given nonrandom target weights with uniformly bounded norm
▶ αn – some unknown shrinkage intensity⇝ object of interest

Out-of-sample mean-variance objective function:

U = ŵ′
SE (αn)µ−

γ

2
ŵ′

SE (αn)ΣŵSE (αn) −→ max s.t. αn

Solution:

⇝ α∗
n = γ−1 (ŵEU − b)′(µ− γΣb)

(ŵEU − b)′Σ(ŵEU − b)
.

Bodnar, T., Okhrin, Y., and Parolya, N. (2023). Optimal shrinkage-based portfolio selection in high dimensions. Journal of Business
& Economic Statistics 41: 140-156.

7 / 23



Practical and theoretical aspects of high-dimensional optimal portfolio selection

Improved estimator: Shrinkage approach

Theorem 1
Under Assumptions (A1)-(A3), it holds that

α∗
n

a.s.−→ α∗ for
p
n

→ c ∈ (0,+∞) \ {1} as n → ∞ with

α
∗ =



γ−1
(RGMV − Rb)

(
1 +

1

1 − c

)
+ γ(Vb − VGMV ) +

γ−1

1 − c
s

1

1 − c
VGMV − 2

(
VGMV + γ−1

1−c (Rb − RGMV )

)
+ γ−2

(
s

(1 − c)3
+

c

(1 − c)3

)
+ Vb

c < 1,

γ−1
(RGMV − Rb)

(
1 +

1

(c − 1)

)
+ γ(Vb − VGMV ) +

γ−1

c(c − 1)
s

c2

(c − 1)
VGMV − 2

(
VGMV + γ−1

c(c−1) (Rb − RGMV )

)
+ γ−2

(
s

(c − 1)3
+

c2

(c − 1)3

)
+ Vb

c > 1.

,

where

▶ RGMV and VGMV are the expected return and the variance of the true GMV
portfolio

▶ Rb = b′µ and Vb = b′Σb are the expected return and the variance of the target
portfolio b

▶ s – the slope parameter of the efficient frontier
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Improved estimator: Shrinkage approach

Oracle shrinkage EU portfolio

ŵOSE = α∗ŵEU + (1 − α∗)b

Corollary 1

Let USE and US be the expected utilities for the oracle shrinkage EU portfolio and the
sample EU portfolio, respectively. Then the relative losses are given by

rSE =
UEU − USE

UEU

a.s.−→


(α∗)2rS + (1 − α∗)2rb + α∗(1 − α∗) 1+c−c2

c(c−1)
Rb−RGMV −γ−1s

UEU
for c < 1,

(α∗)2rS + (1 − α∗)2rb + α∗(1 − α∗) c
1−c

Rb−RGMV −γ−1s
UEU

for c > 1.

rS =
UEU − US

UEU

a.s.−→



γ
2

(
1

1−c −1
)
·VGMV +γ−1

(
1
2 − 1

(1−c) +
1

2(1−c)3

)
·s+ γ−1

2 · c
(1−c)3

RGMV +
γ−1

2 ·s− γ
2 VGMV

for c < 1,

γ
2

(
c2

c−1 −1
)
·VGMV +γ−1

(
1
2 − 1

c(c−1) +
1

2(c−1)3

)
·s+ γ−1

2 · c2

(1−c)3

RGMV +
γ−1

2 ·s− γ
2 VGMV

for c > 1.

for p
n → c ∈ (0,+∞) \ {1} as n → ∞.
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Improved estimator: Shrinkage approach

Relative losses as a function of p
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Figure: c = 0.2 (top left), 0.5 (top right), 0.8 (bottom left), 2 (bottom right)
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Improved estimator: Shrinkage approach

Bona-fide estimation
Theorem 2
Under Assumptions (A1)-(A3), consistent estimators for RGMV , VGMV , s, Rb and Vb

under large dimensional asymptotics p/n → c as n → ∞ are given by

R̂c = R̂GMV
a.s.−→ RGMV

V̂c =


1

1 − p/n
V̂GMV for c < 1,

1
p/n(p/n − 1)

V̂GMV for c > 1.

a.s.−→ VGMV

ŝc =


(1 − p/n)ŝ − p/n for c < 1,

p/n(p/n − 1)ŝ − p/n for c > 1.

a.s.−→ s

R̂b = b′ȳn
a.s.−→ Rb

V̂b = b′Snb a.s.−→ Vb ,

where R̂GMV , V̂GMV and ŝ are the corresponding sample estimators.
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Improved estimator: Shrinkage approach

Bona-fide shrinkage EU portfolio

ŵBFSE = α̂∗ŵEU + (1 − α̂∗)b

with

α̂∗
c (b) =



γ−1
(R̂c − R̂b)

(
1 +

1
1 − p/n

)
+ γ(V̂b − V̂c) +

γ−1

1 − p/n
ŝc

1
1 − p/n

V̂c − 2
(

V̂c + γ−1

1−p/n (R̂b − R̂c)
)
+ γ−2

(
ŝc

(1 − p/n)3
+

p/n
(1 − p/n)3

)
+ V̂b

c < 1,

γ−1
(R̂c − R̂b)

(
1 +

1
p/n(p/n − 1)

)
+ γ(V̂b − V̂c) +

γ−1

p/n(p/n − 1)
ŝc

(p/n)2

p/n − 1
V̂c − 2

(
V̂c + γ−1

p/n(p/n−1) (R̂b − R̂c)
)
+

γ−2

(p/n − 1)3

(
ŝc + (p/n)2

)
+ V̂b

c > 1.
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Shrinkage-based test on EU portfolio weight

Test theory based on the sample estimator

Tests on the weights of optimal portfolios

Generalized linear hypothesis:

H0 : LwEU = r against H1 : LwEU ̸= r,

▶ L : k × p dimensional matrix with k < p − 1

▶ r : k -dimensional vector

Approach: Tests based on Mahalanobis distance

Bodnar, T. and Schmid, W. (2011). On the exact distribution of the estimated expected utility portfolio weights: Theory and
applications, Statistics & Risk Modeling 28: 319-342.

Bodnar, T., Dette, H., Parolya, N. and Thorsén, E. (2022). Sampling distributions of optimal portfolio weights and characteristics in
low and large dimensions, Random Matrices: Theory and Applications 11: 2250008.

13 / 23



Practical and theoretical aspects of high-dimensional optimal portfolio selection

Shrinkage-based test on EU portfolio weight

Test theory based on the sample estimator

Test based on Mahalanobis distance

Test statistics:
TL = (n − p + 1) (ŵL − r)′ Ω̂

−1
L (ŵL − r) ,

where

ŵL = LŵEU =
LŜ−1

n 1p

1′
pŜ−1

n 1p
+ γ−1LQ̂nȳn,

Ω̂L =
LQ̂nL′

1′
pŜ−1

n 1p
+ γ−2(ȳ′

nQ̂nȳn + 1)LQ̂nL′ + γ−2LQ̂nȳnȳ′
nQ̂nL′

Under the null hypothesis:

▶ TL
d→ χ2

k as n → ∞ (classical asymptotics)
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Shrinkage-based test on EU portfolio weight

Test theory based on the sample estimator

High-dimensional improvement

Test statistics:
TL;c = (n − p) (ŵL;c − r)′ Ω̂

−1
L;c (ŵL;c − r) ,

where

ŵL;c =
LŜ−1

n 1p

1′
pŜ−1

n 1p
+ γ−1ŝc η̂L;c ,

Ω̂L;c =

(
γ−2(ŝc + 1) + V̂GMV ;c

)
(1 − cn)LQ̂L⊤ + γ−2ŝ2

c η̂c η̂
′
c

with

η̂L;c =
ŝc + cn

ŝc

LQ̂nȳn

ȳ′
nQ̂nȳn

, ŝc = (1 − cn)ŝ − cn, V̂c =
V̂GMV

1 − cn
, cn =

p
n

Under the null hypothesis:

▶ TL;c
d→ χ2

k for p/n → c as n → ∞ with k << p (high-dimensional asymptotics)
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Shrinkage-based test on EU portfolio weight

Test theory based on the sample estimator
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χ2-approximation of the densities of TL and TL;c together with their kernel density
estimators for γ = 5 and p = 300

c = 0.3

k = 10 k = 30 k = 100
TL 0.526 0.890 1
TL;c 0.059 0.071 0.172

c = 0.8

k = 10 k = 30 k = 100
TL 0.216 0.762 1
TL;c 0.069 0.105 0.220

Empirical sizes of the tests based on TL and TL;c using 104 independent replications. 16 / 23
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Shrinkage-based test on EU portfolio weight

Test theory based on the sample estimator

Take home message

▶ Both TL and TL;c are highly inconsistent

▶ Especially, TL has a much higher size than the nominal significance value

▶ TL;c performs much better than TL for smaller values of k , but discrepancy
becomes large if k increases

▶ Both tests cannot be applied to validate the structure of the whole portfolio as a
single test⇝ multiple test

▶ Negative impact on the power of each marginal test

Solution: New approaches for testing the structure of the whole optimal portfolio.
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Shrinkage-based test on EU portfolio weight

Shrinkage-based test

High-dimensional shrinkage test on wEU = w0

Hypotheses in terms of weights:

H0 : wEU = w0 against H1 : wEU ̸= w0,

Idea: set b = w0 ⇝ α∗(w0) = 0

Theorem
Under the null hypothesis, it holds that

√
nα̂∗

c (w0)
d→ N (0,Cα;0), for p/n → c ∈ [0, 1) as n → ∞

▶ α̂∗
c (w0) is a consistent estimator of α∗(w0)

▶ Cα;0 = Cα;0(RGMV ,Rb,VGMV ,Vb, s).

Bodnar, T., Dmytriv, S., Okhrin, Y., Parolya, N., and Schmid, W. (2021). Statistical inference for the expected utility portfolio in high
dimensions, IEEE Transactions on Signal Processing 69: 1-14.
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Shrinkage-based test on EU portfolio weight

Shrinkage-based test

Test statistics
Under the null hypothesis:

▶

Tα =

√
nα̂∗

c (w0)√
Cα;0(R̂GMV , R̂b, V̂c , V̂b, ŝc)

d→ N (0, 1) for p/n → c ∈ [0, 1) as n → ∞

▶

T̃α =

√
nα̂∗

c (w0)√
Cα;0(R̂GMV , R̂b, V̂c , V̂b, γ(R̂b − R̂GMV ))

d→ N (0, 1) for p/n → c ∈ [0, 1) as n → ∞

where
▶ R̂GMV , R̂b , and V̂b are the sample estimator of RGMV , Rb , and Vb
▶ V̂c and ŝc are consistent estimators of VGMV and s

Remark: Using the duality between the test theory and confidence interval, the null
hypothesis is rejected at significance level β as soon as the (1 − β) confidence interval
constructed for α∗(w0) does not include zero.
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Shrinkage-based test on EU portfolio weight

Shrinkage-based test

Size properties
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Normal approximation of the densities of Tα and T̃α together with their kernel density
estimators for γ = 5 and p = 300

c = 0.3 c = 0.8

Tα 0.052 0.053

T̃α 0.051 0.052

Empirical sizes of the tests based on Tα and T̃α using 104 independent replications.
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Shrinkage-based test on EU portfolio weight

Shrinkage-based test

Power analysis
Model under the alternative hypothesis

µ1 = µ+ ϵ,

where
ϵ = −a · (1, . . . , 1︸ ︷︷ ︸

m

, 0, . . . , 0︸ ︷︷ ︸
m

),

where a = 0.01κ, κ ∈ {0, 1, 2, . . . , 35}, m = 0.5p.
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Empirical power of the proposed tests as a function of the change a and p = 300
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Empirical illustration

Efficiency of the equally weighted portfolio: empirical illustration
Data: Daily returns on all companies listed in the S&P 500 index for the period from
April 1999 to March 2020

Portfolio: First p assets, p ∈ {100, 300}, in alphabetic order from the available data.
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c=0. 8, p=100, γ=5
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c=0. 8, p=300, γ=5

Estimated shrinkage intensities for the equally weighted portfolio as the target portfolio with 95%

pointwise confidence intervals. The black dots indicate the periods with rejected H0 (1-values) and

not rejected H0 (0-values)

Bodnar, T., S. Dmytriv, Y. Okhrin, D. Otryakhin and N. Parolya (2022) HDShOP: High-Dimensional Shrinkage Optimal Portfolios. R
package version 0.1.3.
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Summary

Why all these efforts?
▶ Interesting mathematics

▶ Better understanding the properties of the estimators and the test statistics
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▶ Simple application to financial data

▶ Interesting empirical results

▶ Equally weighted portfolio is not
efficient, especially when p is large

▶ Naı̈ve portfolio has a poor performance
during the volatile period

Thank you very much for your attention!
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